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Società Italiana di Fisica
Springer-Verlag 1999

Canted antiferromagnetism and magnetoelastic coupling
in metallic Ho0.1Ca0.9MnO3

K. Hagdorn1, D. Hohlwein1,2, J. Ihringer1, K. Knorr1, W. Prandl1,a, H. Ritter1, H. Schmid1, and Th. Zeiske1,2
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Abstract. Ho0.1Ca0.9MnO3 is a canted antiferromagnet with the magnetic space group Pn′ma′. The mag-
netic structure is a superposition CxFyAz of the three types of order allowed in Pn′ma′. In the Ca-
rich corner of the system Ho1−xCaxMnO3 the title compound has a strong magnetoelastic distortion
∆VMAG/V = 1.2× 10−3, the highest metallic conductivity and a ferromagnetic component Fy close to the
maximum in the series. Among the areas ab, bc, ca calculated from the lattice constants only ca shows a
strong magnetoelastic effect below TN = 106 K. The x-, y-, z-spin components depend differently on the
temperature. This gives rise to spin rotation which is particularly strong close to TN. MnO6 octahedra
have short bond lengths with a temperature independent average 〈MnO〉 = 1.91 Å. They are practically
regular at room temperature and show a Jahn-Teller distortion of 3.5% in the magnetically ordered state.
Above TN we find small polaron conductivity. The presence of the Jahn-Teller distortion due to the only
small abundance (10%) of Mn3+ in the t3

2geg configuration is attributed to delocalised eg electrons. In
the magnetically ordered state the averaged magnetic moment of Mn is reduced appreciably from the
paramagnetic value due to spin disorder.

PACS. 75.25.+z Spin arrangements in magnetically ordered materials (including neutron
and spin-polarized electron studies, synchrotron-source x-ray scattering, etc.) – 71.38.+i Polarons
and electron-phonon interactions – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Jonker and van Santen reported 1950 in two seminal pa-
pers [1,2] about ferromagnetism and metallic conductiv-
ity in the perovskitic oxides (La,Me)MnO3 with Me =
Ca, Sr and Ba. These phenomena where then attributed
to double exchange and electron hopping [3–5]. Wollan
and Koehler [6] investigated the microscopic magnetism of
(La,Ca)MnO3 mixed crystals and found a wealth of mag-
netic structures. The discovery of magnetoresistance [7]
in (La,Ca)MnO3 triggered much renewed interest in the
magnetic and transport phenomena of this class of metal-
lic or semiconducting ferromagnets with orthorhombically
distorted perovskite structure.

Recently compositions with giant magnetoresistance
[8–12] have been found in this family of compounds and
the question about the origin of this effect as well as possi-
ble technical applications of these materials for magnetic
sensors have greatly encouraged the efforts to increase
the magnitude of the effect. In all these attempts chemi-
cal engineering was the basic working principle: La is re-
placed partly or completely by one or more of the light
rare earth elements [10–12]. The crystal chemical reason
is that LaMnO3, REMnO3 (for the light rare earth ions
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from Ce to Dy) and CaMnO3 all have the distorted per-
ovskite structure with the space group Pnma and form
continuous series of isomorphous mixed crystals [13–15].
Crystals of REMnO3 with heavy RE ions from Ho to Lu
on the other hand crystallize hexagonally [16] with the
space group P63cm at atmospheric pressure, but can be
transformed at T ≈ 900 ◦C and high pressure into the
orthorhombic form [17]. In the case of HoMnO3 the vol-
ume shrinks in the transition from the hexagonal to the
orthorhombic phase by ∆V/V = 9.4%.

Since the ionic radii of Ca++ (0.99 Å) and Ho3+

(0.894 Å) differ by barely more than the empirical com-
patibility ratio ∆r/r ≤ 10% for isomorphous structures,
mixed crystals Ho1−xCaxMnO3 should have the Pnma
structure at least for x not too close to zero, and this
is indeed what we find: single orthorhombic phases at
least up to x = 0.5, and a mixture of orthorhombic as
well as hexagonal crystals at x = 0.9 (300 K). Since the
Ho3+ ion is smaller than Ca++, whereas rLa3+ = 1.016 Å
comes close to rCa2+ , one would expect differences in the
magnetic phase diagram if the ionic radii were the driv-
ing force, but none if stoichiometry is the governing fac-
tor. Indeed for any ion, La3+ or RE3+, in a compound
(A3+

1−xCa2+
x )MnO3 = (A3+

1−xCa2+
x )(Mn3+

1−xMn4+
x )O3 the

homogeneous population of Mn4+ with the electron
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configuration t3
2g for x = 1 is changed into a mixed va-

lence state (t3
2geg)1−x(t3

2g)x for x < 1. The present paper
provides evidence for the influence of the ionic radii on the
magnetic behaviour.

The paper is organised in the following way: in Sec-
tion 2 we present the experimental details, in Section 3.1
basic information on the structure, and in 3.2 and 3.3
the results of neutron and high resolution X-ray powder
diffraction, respectively. Section 3.4 covers the tempera-
ture dependent atomic shifts, and 4 gives a summary. We
refer to our magnetisation and resistivity measurements
in Section 3.2.

2 Experimental details

Samples of Ho0.1Ca0.9MnO3 were obtained by standard
ceramic techniques. Calcium carbonate and metal oxides
of Ho and Mn were ground, pressed into pellets and cal-
cined at 1 000 ◦C in air. This procedure was repeated once,
and in the final step the samples were annealed in pure
oxygen at 1 400 ◦C (24 h) and at 700 ◦C (15 h).

X-ray powder diagrams were taken with a focusing low
temperature Guinier-diffractometer and camera [18] using
CuKα1 radiation. Most of the data were recorded on X-
ray films, but a few diagrams were measured with a twin
counter. All samples contained ≈ 5 weight % of Si (NBS
640 B; average particle size 5 µm) as a calibration stan-
dard.

Measurements were made in the temperature interval
10 K ≤ T ≤ 290 K with linear heating/cooling slopes
of 10 K/h. The powder samples were prepared on circular
mylar sheets which were rotated with 6 revolutions/min in
the X-ray beam in order to guarantee good grain statistics
of the powder.

We used a film lift device for the temperature depen-
dent measurements: the film is moved with constant speed
behind a cylindrical aperture of 2 mm height. The magni-
tude of the aperture, the speed of the film motion and the
slope for changing the temperature imply an uncertainty
∆T ≈ 1 K for a specific position of the film.

Intensities on the films were digitised with a JOECE-
LOEBL densitometer (series 1471; resolution of the opti-
cal density: 10 bits) in tracks separated by 5 K each. Lat-
tice constants scaled with the lattice constant aSi(T ) [19]
were extracted with the local profile refinement procedure
SIMREF 2.4 [20].

Neutron powder diffraction data were recorded at the
E2/1 Flat-Cone and powder diffractometer [21] of the
Berlin Neutron Scattering Center/HMI/Berlin. We used
neutrons with a wavelength of 2.41 Å from the (002)
planes of a pyrolytic graphite monochromator. Higher har-
monics were suppressed by a graphite filter in the primary
beam. The diffractometer is equipped with a linear posi-
tion sensitive detector (400 channels) covering 80◦ in 2Θ.
The pixel resolution of 0.2◦ in 2Θ is improved by an au-
tomatic angular shift of the detector by 0.1◦ in 2Θ. In
this way the density of data points is doubled: this is im-
portant for the Rietveld refinements. The angular range

covered was 15◦ < 2Θ < 95◦. To reduce the angular width
of the Bragg reflections the horizontal divergence of the
incoming neutron beam is limited by a 30′ Soller collima-
tor mounted in front of the monochromator. An oscillat-
ing radial collimator installed between the sample and the
multidetector is used to improve the signal to background
ratio and to eliminate scattering due to the cryostat. The
powdered samples are contained in a cylindrical vanadium
can (diameter: 8 mm) mounted in an ILL orange cryostat.
Measurements were made in the temperature interval be-
tween 10 K and 150 K. The data collection at each tem-
perature required about 3 hours.

3 Results

3.1 Basic structural data

The crystal structure of Ho0.1Ca0.9MnO3 is related to the
ideal cubic perovskite structure by tilting the MnO6 octa-
hedra. The specific tilt system active in the present case is
a− b+ a− in Glazer’s notation [22] for our choice of axes.
The resulting orthorhombic O-type structure with space
group Pnma has lattice constants a ≈

√
2aP , b ≈ 2aP ,

c ≈
√

2aP with a > c and b > c
√

2. Orthorhombically dis-
torted perovskites obeying b > c

√
2 are described as the

O type, and as O′ type for b < c
√

2 in the literature [15].
The manganese ions occupy the 4a Wyckoff positions

(0, 0, 0; 1/2, 0, 1/2; 0, 1/2, 0;1/2, 1/2, 1/2) [23]. Ho/Ca
and O1 are in 4c positions (x, 1/4, z) and O2 in the general
8d position (x, y, z). For the description of the magnetic
structure we use the standard labels [24] Aα(+ − −+),
Cα(+ + −−) and Fα(+ + ++), where the signs refer to
the α (= x, y, z)-component of the magnetic moments of
the Mn ions in 4a in the order given.

3.2 Neutron diffraction: magnetism

Below ≈ 100 K the neutron diagrams show, beyond
the allowed nuclear reflections, two features: purely mag-
netic reflections and additional intensity on top of nuclear
peaks (Figs. 1a and 1b). All magnetic contributions can
be indexed in the chemical cell, i.e. with the wave vec-
tor q = (0, 0, 0). The two observations mentioned point
out a superposition of ferro- and antiferromagnetic com-
ponents, i.e. due to a canted antiferromagnet. All data
can indeed be interpreted with the magnetic space group
Pn′ma′ [25] which supports a magnetic structure of the
type (CxFyAz). A refinement based on Pn′ma′ is shown in
Figure 1b. Magnetic and structural data calculated with
the profile refinement program FULLPROF 2.2 [26] are
given in Table 1.

The superimposed (110)/(011) reflections are predom-
inantly of antiferromagnetic origin due to the Az com-
ponent: (110) is purely magnetic, whereas (011) has a
very small calculated nuclear contribution, which amounts
to I(011)nuclear/[I(110) + I(011)]total = 2.5 × 10−3 at
10 K. The two reflections occur at 2Θ(110) = 32.131◦
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Table 1. Structural and magnetic parameters at 10 K.

space group: Pnma
magnetic space group: Pn′ma′

magnetic structure: CxFyAz

lattice constants: a = 5.301 9(1) Å

b = 7.451 5(2) Å

c = 5.260 5(1) Å

Wyckoff
position

x y z

Ho/Ca 4b 0.042(2) 0.25 0.488(3)
O1 4c −0.005(2) 0.25 0.075(2)
O2 8d 0.282(2) 0.035(1) −0.207(2)
Mn 4a 0.0 0.0 0.0

magnetic moment(1) [µB] 0.375(30) 0.895(80) 2.064 (20)

(1) the absolute values |mx|, |my|, |mz| at Mn(0, 0, 0) are given. The four different orientations of the magnetic
moment compatible with the data are discussed in Section 4 (see also Fig. 15).

Fig. 1. (a) Difference diagram I10 K − I150 K: the ferromag-
netic intensities sitting on top of allowed nuclear reflections of
Figure 1a are clearly visible. Additional magnetic reflections
are due to the canted AF components in the ordered phase.
(b) A fit of the 10 K data by the model of the canted antifer-
romagnet.

and 2Θ(011) = 32.305◦, respectively: they can not be sep-
arated with the resolution at hand. Indeed at T > TN

no nuclear intensity can be found at the position given,

and so the total intensity may safely be taken as purely
antiferromagnetic due to the Az component.

Since the (110)/(011) peaks are well separated from
other reflections their intensity can be extracted with good
accuracy: we find (σI/I) = 8×10−3 and 1.3×10−2 at 10 K
and 90 K, respectively: Figure 2 (bottom). For fitting the
(110)/(011) integrated intensity we use a phenomenologi-
cal formula

I(T ) = C(1− τd)e (1)

with τ = T/TN which describes the observed M2 (Az)
quite reasonably: Figure 2.

In the limit T =⇒ TN equation (1) becomes

I(T ) ∼M2 ∼ de(1− τ)e, (2)

and for low temperatures T =⇒ 0

I(T ) = C(1− deτd). (3)

So we obtain for the sublattice magnetisation M ∼ I1/2

∆M = M(0)−M(T ) ∼ T d

in the latter case.
Fitting the data with this model we find TN =

106.0(0.14) K, e = 0.736(0.020) and d = 2.53(0.09).
Close to TN this results in M ∼ (1 − τ)e/2 with

e/2 = 0.368(.010) which is very close to the critical
exponent β = 0.364 6 of the 3-d Heisenberg ferromag-
net [27]. On the other hand we obtain for low temper-
atures ∆M ∼ T 2.53(9), while from spin wave theory one
would expect ∆M ∼ T 2 for an isotropic Heisenberg an-
tiferromagnet [28]. The larger exponent of the power law
found experimentally may be a hint for the contribution
of the local anisotropy to the spin wave dispersion or be
due to magnetoelastic interaction. The magnetic structure
found is given in Figure 3.

We derive the temperature dependence of the spin
components (Fig. 4) from a combination of profile
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Fig. 2. The temperature dependence of the susceptibility χ
and its inverse, of the resistivity ρ and of the magnetic intensity
I(110/011).

refinements of the neutron data and a direct analysis
of the mixed ferromagnetic and nuclear reflections (020)
and (121). It may be worth while to point out here that
a straightforward application of only the profile refine-
ment method at all temperatures would result in an erro-
neous temperature dependence of the ferromagnetic com-
ponent my for values of my close to zero: my would vanish
smoothly close to 95 K, well below TN. This is due to the
fact that in the diffraction of unpolarized neutrons mag-
netic and nuclear intensities are superimposed. If the fer-
romagnetic contribution to the complete data set is very
small or zero, then it will have negligible influence on the

Fig. 3. The magnetic structure at 10 K. In the structure shown
the magnetic moment at Mn(0, 0, 0) is (|mx| , |my| ,−|mz|).
For variants compatible with the data see Figure 15 and the
discussion in Section 4.
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Fig. 4. The temperature dependence of mx,my,mz, and
mtotal. The three components clearly behave differently. Fit
parameters: Table 1.

residual of the whole powder pattern which is minimised
during the refinement. The antiferromagnetic sublattice
magnetisations mx and mz, on the other hand, give rise
to some pure magnetic reflections, and so are not touched
by this difficulty. We underline this argument by Fig-
ure 2 which shows the magnetisation (properly speaking
χ = M/H for a powder sample in a field of 100 Oe; [29])
and the resistivity ρ(T ) [30]. For ρ(T ) we find the anomaly
typical for the giant magnetoresistant compounds: a max-
imum at TN = 106 K. The magnetisation vanishes, again
at the same temperature. These independent observations
support the method used for the determination of the fer-
romagnetic component from neutron data. The observed
susceptibility contains two contributions: a holmium and
a manganese part. Neutron measurements down to 50 mK
do not give any evidence for Ho spin order. We have



K. Hagdorn et al.: Antiferromagnetism and magnetoelastic coupling in metallic Ho0.1Ca0.9MnO3 247

Table 2. Fit of magnetic and lattice data with equation (1): A
�
1− (T/T0)d

�e
. Parameters given without errors were kept

constant.

A T0 [K] d e

I(110)+(011) 106.0 (0.14) 2.53 (0.09) 0.736 (0.02)

mx [µB] 0.375 (0.024)(1) - - -

- - - -

my [µB] 0.895 (0.074)(1) 106.0 - -

0.81 (0.05)(2) - 3.0 (2.2)(2) 0.37 (0.16)(2)

mz [µB] 2.064 (0.024)(1) 106.0 - -

2.09 (0.01)(2) - 2.32 (0.16)(2) 0.33 (0.01)(2)

mtotal [µB] 2.28 (0.04)(1) 106.0 - -

2.28 (0.02)(2) - 2.38 (0.30)(2) 0.31 (0.02)(2)

∆Vm [Å3] −0.276 (0.036) 106.1 (1.6) 1.10 (0.54) 0.66 (0.14)

∆a [Å] −0.0043 (0.0001) 101.4 (2.2) 2.48 (0.43) 0.95 (0.21)

∆b [Å] 0.0074 (0.0002) 100.6 (1.4) 2.29 (0.36) 0.99 (0.15)

∆c [Å] −0.0042 (0.0001) 106.0 2.51 (0.42) 0.84 (0.10)

(1) from FULLPROF [23].
(2) from equation (1) applied to the temperature dependent FULLPROF results.
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small polaron law, equation (4).

modelled the paramagnetic Ho contribution χHo(T ) with
an approximate cubic crystal field which turned out to
be necessary in order to make the manganese susceptibil-
ity positive at all temperatures [29]. From the corrected
χMn(T ) = χexp(T ) − χHo(T ) we obtain a paramagnetic
Curie temperature ΘC ≈ 99 K and a Mn mean square
magnetic moment 〈µ2

Mn〉1/2 ≈ 3.3 µB.
The resistivity due to small polarons is [31]

ρ(T ) = AT 3/2 exp(TSP/T ). (4)

In Figure 5 we have plotted ln[ρ(T )/T 3/2] vs. 1/T . As
shown the high temperature small polaron part above

TN can be fitted fairly well with a straight line: from
this we obtain a small polaron activation energy TSP =
307.4(0.2) K. We may point out that the minimum of ρ(T )
in Figure 2 does apparently not have any physical signifi-
cance, since it is completely absorbed in the straight line
section of Figure 5.

Since the ferromagnetic intensity is always on top of
nuclear reflections the component my(Fy) have larger er-
ror bars. The total local magnetisation is dominated by
the antiferromagnetic component mz(Az), and so it is
not surprising that mtotal can be fitted with equation (1)
also. The resulting exponents d and e are very close. For
my(Fy), however, we find distinctly different d and e: Ta-
ble 2.

From the 10 K neutron data we obtain mx(Cx) =
0.375 µB, my(Fy) = 0.895 µB,mz(Az) = 2.064 µB, respec-
tively. There seems to be a discrepancy between this value
for my(Fy) and the lower saturation value per Mn ion of
only 0.17 µB derived from the magnetisation in a field of
100 Oe (Fig. 2). In the latter case, however, we measure
a powder average in a field which is too small to flip all
domain magnetisations so that they would have a nonzero
component parallel to H. We have estimated the coerciv-
ity Hc from the ratio 0.17/0.895 and find Hc ≈ 60 Oe,
a value which compares well with direct measurements of
the magnetisation cycle [29].

The magnetic moment at saturation mtotal(0 K) =
2.27(0.02) µB is well below the spin only estimation
〈mtotal〉 = (1 − x)m(t3

2geg) + xm(t3
2g) = 3.97 µB with

x = 0.9. We will come back to this discrepancy in Sec-
tion 4.

The mx, my, mz components depend differently on the
temperature. Only mz decreases monotonically between
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10 K and TN. The ferromagnetic component my stays ef-
fectively constant for 10 K ≤ T ≤ 30 K, whereas mx

increases slightly from low temperatures up to 100 K and
vanishes then within a narrow interval. This behaviour
is a clear demonstration of spin rotation. In Figure 6 we
describe the spin reorientation by the polar angles Θ, Φ
defined by

cosΘ = mx/mtotal

tanΦ = mx/mz,

i.e. with the ferromagnetic direction as the polar axis.
We remark in passing that we do not find any hint
for different critical temperatures for one or two of the
three components of the Mn moments, as was found for
one component in the canted antiferromagnetic insulator
La0.875Sr0.125MnO3 [32].

3.3 X-ray data: lattice constants and magnetoelastic
effects

The data of the lattice constants a, b, c given in Figure 7
have been calculated by full profile refinement (SIMREF
2.4; [20]) X-ray diagrams comprising 100 reflections for
each temperature. The onset of magnetoelastic distortions
below 106 K is clearly visible. To separate thermal and
magnetic effects we need an algorithm for the extrapola-
tion of the T > TN data into the magnetically ordered
state. We have tried several methods. A polynomial ex-
trapolation of the lattice constants b and c from the para-
magnetic region gives reasonable results, it needs, how-
ever, additional and more or less arbitrary assumptions
for the a(T ) constant as, for instance, a fixed value a(0 K)
and/or a vanishing derivative at 300 K. A version of the
Debye-Grüneisen theory of lattice expansion modified for
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Fig. 7. The lattice constants a(T ), b(T ), c(T ) from X-ray data.

orthorhombic symmetry along the lines suggested recently
by Sayetat, Fertey and Kessler [33] did not produce stable
results either, presumably due to the reduced temperature
interval 110 K ≤ T ≤ 300 K available for the extrapola-
tion.

The analysis we present here is based on the ob-
servation, shown in Figure 8, that among the three ar-
eas bc = A2, ca = B2 and ab = C2 two, namely A2

and C2, show only a minor magnetic influence at TN,
or none at all. At lower temperatures the small devia-
tions from the polynomial extrapolation are of the or-
der of the error bars. The solid lines in Figure 8 have
been determined from paramagnetic data using polyno-
mials P (T ) = a0 + a2T

2 + a3T
3 + a4T

4.
From A2, B2 and C2 one obtains immediately a =

BC/A, b = CA/B and c = AB/C: Figure 9 demonstrates
that these “model” lattice constants match the high tem-
perature observations quite well. In Figure 10 we plot the
magnetic excess lengths −∆a, ∆b and −∆c. It is evident
that the magnetic distortions −∆a and ∆b approach zero
well below the Neel temperature whereas−∆c vanishes at
TN. This general behaviour is supported by all models of
extrapolation, and also by fits of −∆a, ∆b and −∆c with
equation (1).

Finally we present the thermal and magnetic strains
defined here as s1 = (b/

√
2 − c)/(b/

√
2 + c), s2 = (c −

a)/(c + a) and s3 = (a − b/
√

2)/(a + b/
√

2), again as a
comparison between the calculated (from A,B,C) and the
observed values (Fig. 11). s2 is apparently not influenced
by the magnetic order, whereas the magnetic contribu-
tions ∆s1 and ∆s3 have opposite signs, and at saturation
∆s1(0 K) ≈ −∆s3(0 K). We point out that the extrapo-
lated component s1 comes very close to zero at T = 0 K,
and so, formally, the unit cell without magnetoelastic dis-
tortions would become metrically tetragonal.

We now look for correlations between the excess
lengths and sublattice magnetisations. There is a clear
correlation between the magnetic distortion −∆c and
the squared staggered magnetisation mz(Az): Figure 12
shows the linear relation found. In complete analogy
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with this the distortion (−∆c) follows equation (1) with
d = 2.51(0.42) and e = 0.87(0.10).

3.4 The microscopic distortions

We have analysed the real stoichiometry of our samples by
diffraction. Four X-ray data sets collected with the Guinier
diffractometer and one neutron diagram (λ = 1.218 Å),
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Fig. 9. The observed a(T ), b(T ), c(T ) compared with a =
BC/A, b = CA/B, c = AB/C calculated from the polynomial
extrapolation in Figure 8.

all measured at room temperature, were treated with
SIMREF 2.4 [20]. The site occupation factors n for Ho/Ca,
Mn and O found are: n(Ho) = 1 − n(Ca) = 0.099(1),
n(Mn) = 1.022(3), n(O1) = n(O2) = 1.006(1).

We use a combination of the X-ray (lattice con-
stants) and neutron data (oxygen coordinates) to
follow the temperature dependence of the Mn-O dis-
tances and the Mn-O-Mn bond angles shown in Fig-
ures 13 and 14. In Ho0.1Ca0.9MnO3 the a priori prob-
ability for Mn3+ and Mn4+ is 0.1 and 0.9, respectively,
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Fig. 10. The magnetic excess lengths −∆a, ∆b, −∆c. Data
(squares) in the magnetic temperature range are fitted by equa-
tion (1).

and from the stoichiometric analysis just mentioned the
actual Mn3+/Mn4+occupation factors are very close to
0.1/0.9. Since Bragg intensities always average over the
whole lattice, all distances and bond angles given in
Figures 13 and 14 are averages over the Mn3+/Mn4+

disorder present. Nonetheless there is a clear evidence
for the reduction of the (Mn-O)-(Mn-O) strain in the
octahedra when the crystal enters into the magnetic
state: Mn-O21 contracts by 1.25%, whereas Mn-O22 ex-
pands by 1.5%, and Mn-O1 stays constant. Since the
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√

2).

O21-Mn-O22 plane coincides to within 10◦ with the ac
plane (comp. Fig. 15), and Mn-O1 deviates by nearly the
same amount from the b direction, a homogeneous con-
traction of the octahedra would follow the behaviour of
the lattice constants. This is, however, true only for Mn-
O1: as a consequence the angle Mn-O1-Mn = Mn(0, 0, 0)-
O1-Mn(0, 1/2, 0) stays essentially constant between 10 K
and 150 K: Figure 14. The second relevant bond angle
Mn(0, 0, 0)-O21-Mn(1/2, 0,−1/2) diminishes by roughly
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1◦ during the transition as a consequence of the magne-
tostrictive change of the area B2 = ca (Fig. 8).

4 Discussion

We discuss at first the orientation of the average magnetic
moment with respect to the oxygen atoms surrounding
manganese. At room temperature the MnO6 octahedra
are nearly regular with distances Mn-O1, Mn-O21, Mn-O22

found from a combination of one neutron (λ = 1.218 Å)
and four X-ray data sets as 1.902 Å, 1.907 Å and 1.919 Å,
respectively.

At 10 K the MnO6 unit is essentially orthorhombic
with distances 1.904 Å, 1.888 Å, 1.935 Å and angles (O1-
Mn-O21), (O21-Mn-O22) and (O22-Mn-O1) of 89.7◦, 89.7◦
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Fig. 14. The Mn-Oj-Mn bond angles Mn(0, 0, 0)-O1(x1, y1,
z1)-Mn(0, 1/2, 0), Mn(0, 0, 0)-O21 ≡ O2(x2, y2, z2)-Mn(1/2, 0,
−1/2). The angle Mn-O2-Mn decreases by 1◦ between the para-
magnetic and the magnetically ordered state.

Fig. 15. A stereographic projection of the spin orientations
(+ + +), (− + −), (+ + −) and (− + +) at the reference ion
Mn in (0, 0, 0) which are compatible with the neutron data. O1,
O21 and O22 belong to the oxygen octahedron surrounding Mn.
BP is the plane which bisects the angle (Mn-O21, Mn-O22) and
passes through Mn-O1.

and 91.4◦, respectively. The octahedra are, however tilted
by ≈ 10◦ out of the ac plane, as shown in Figure 15.
We may characterise these tilts more specifically by the
angular deviations of Mn-O1 from the direction b, and
of Mn-O21 and Mn-O22 from the ac plane, for which we
find, again at 10 K, 12.0◦, 8.0◦ and 7.3◦, respectively. In
the ideal perovskite structure all these angles would be
zero.

The magnetic components of the spin at Mn(0, 0, 0)
given in Table 1 are not unique, since any combination of
signs in the local vector (± |mx|, ± |my|, ± |mz|) produces
the same magnetic intensities in experiments using unpo-
larized neutrons and zero external magnetic field: this is
true for powder as well as single crystal specimens. The
absolute values |mα|, α = x, y, z, however, are unique.
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Since a magnetic structure and its time reversed image
are equivalent in H = 0, there remains a fourfold ambigu-
ity of magnetic structures: (± |mx|, + |my|, ± |mz|) where
the y-component has been fixed arbitrarily as positive.
We refer these four models to the local orthogonal coor-
dinate system of the reference Mn-O-octahedron. This is
shown in Figure 15, where we use a shorthand notation,
e.g. (−+−) for (− |mx|, + |my|, − |mz |). The deviations
of the spin from the O21-Mn-O22 plane are then −32.0◦,
8.5◦, 11.0◦, −31.5◦ for the (+ + +), (+ +−), (−+−) and
(−+ +) configurations, respectively. The actual magnetic
structure will be determined by the interplay of the ex-
change interactions and the local anisotropy tensors which
both depend on the electronic configuration of the Mn ions
contributing.

In the present series of neutron measurements we have
reestablished also that undoped CaMnO3 has a nearly
pure collinear Az structure. A very weak Fy component
found from macroscopic magnetisation measurements [29]
turned out to be below the detection limit of our neutron
data. The origin of this small ferromagnetic component is
likely to be due to oxygen defects [34]: an estimated devi-
ation ∆c(O)/c(O) = 3×10−3 in the oxygen stoichiometry
is sufficient to explain this small contribution.

In Ho0.1Ca0.9MnO3 the anisotropy responsible for the
Cx and Fy components is due to the 10% admixture of
(t3

2geg)/Mn3+. If we assume, tentatively, an appreciable
anisotropy favoring O21-Mn-O22 as the easy plane, then
the configurations (− + −) or (+ + −) are expected to
occur: the magnetic structure shown in Figure 3 with the
local orientation (+ + −) at Mn(0, 0, 0) has been drawn
under this assumption. At low temperatures the spin fol-
lows apparently the octahedral tilt: this is the influence of
the electric multipolar fields dominated by nearest oxygen
neighbours on the orbitals of the manganese ions.

Hopping eg electrons are the origin of canted antifer-
romagnetism in mixed valent Mn3+/Mn4+ compounds as
well as for the metallic conductivity [3–5]. This concept
has been extended recently [35] to include strong electron-
phonon coupling contributions. We find indeed canted
magnetic structures in Ho1−xCaxMnO3 for 0.825 ≤ x ≤
1.0 with a maximum of the ferromagnetic component close
to x = 0.9 [29], and metallic conductivity for the same
concentrations [30]. Ho0.2Ca0.8MnO3 is already a pure
collinear antiferromagnet [29].

There remains the question as to why Ho dop-
ing produces the strongest ferromagnetic composition
with only 10% Ho, whereas for the prototype compo-
nent (La,Ca)MnO3 this optimum occurs at 60...75% La
[1,2,36–39]. Further problems to be explained are the in-
crease of the resistivity (Fig. 2) in Ho0.1Ca0.9MnO3 at
low temperatures as compared with the improving metal-
lic behaviour in La0.75Ca0.25MnO3 in the ferromagnetic
state, and the small magnetic moment observed at the
manganese ions in the ordered state.

(1) We first observe that the room temperature unit
cell volume of Ho0.1Ca0.9MnO3 is appreciably smaller
than the volumes of the ferromagnetic isoelectronic se-
ries (R0.7B0.3)MnO3 with R = Y, La, Nd and B = Ca,

Sr, Ba [41]: 208.98 Å3 from the present data vs. 229.69
to 234.55 Å3 [41].

(2) The Mn-O distances in Ho0.1Ca0.9MnO3 in the mag-
netically ordered state for Mn-O1, Mn-O21, Mn-O22

are 1.905, 1.875, 1.940 Å (averaged over 10 K < T <
TN in Fig. 13). In the paramagnetic state we find for
the same distances 1.906, 1.843, 1.965 Å at 150 K,
and 1.902, 1.907, 1.919 Å at 300 K: the time averaged
orthorhombic distortions due to the Jahn-Teller ef-
fect increase between 300 K and 150 K, but decrease
on entering the magnetically ordered state. The de-
crease of the strain component s3 (Fig. 11) mirrors
this effect. In La0.75Ca0.25MnO3, however, Lanzara
et al. [39] find 1.92, 1.92, 2.01 Å in the ferromagnetic
metal against 1.92, 1.92, 2.01 Å and 1.91, 1.91, 2.13 Å
for two different MnO6 configurations in the colossal
magnetic resistance state at T > T ∗ ≈ 220 K. The re-
duced Mn-O bond lengths in the Ho compound quite
evidently enhance the transfer integral [4,5] and im-
prove electron hopping, i.e. delocalisation, and so a
smaller abundance of t3

2geg configurations, again com-
pared with La0.75Ca0.25MnO3, gives rise to metallic
behaviour and ferromagnetic canting. The lower pop-
ulation of t3

2geg results on the other hand in an only
modest ferromagnetic componentmy = 0.895 µB. The
reduction of the lattice averaged Jahn-Teller distor-
tion in the magnetically ordered state (Fig. 13) is very
likely due to a delocalisation of the eg electrons in the
form of magnetic polarons [40] with the concomitant
increase of resistivity [41].

(3) The canting of the magnetic structure is reduced at Ho
concentrations beyond 10% and vanishes at ≈ 17.5%
Ho. The reason is apparently an instability of the
orthorhombic lattice against a monoclinic distortion
(Pnma =⇒ P21/m) which takes place for Ho concen-
trations beyond 13% [42], giving rise to partial charge
order.

(4) We shall, at last, discuss the averaged magnetic mo-
ment of manganese. Basically the small space aver-
aged magnetic moment observed in the magnetically
ordered state might have two reasons: intraatomic ef-
fects or disorder.

On the atomic scale a low spin state of Mn3+ by strong
crystalline fields, i.e. a transition from t3

2geg to t4
2g can

not be ruled out a priori. It would, however, be tied to a
breakdown of Hund’s rule for this configuration and the
absence of Jahn Teller distortions, in contradiction with
the observed orthorhombic distortion of the MnO6 octa-
hedra (Fig. 13). In addition even with all Mn3+ in the low
spin state with mMn3+LOW SPIN = 3.18 µB the averaged
magnetic moment would again be barely reduced to a mere
3.80 µB, since the t3

2g configuration of Mn4+ with a 4A2g

ground state is not changed by strong crystal fields. So an
intraatomic spin reduction can be safely excluded. An ad-
ditional argument favoring normal magnetic behaviour on
the atomic scale comes from the observed mean square av-
eraged moment 〈µ2

Mn〉1/2 = 3.3 µB as compared with the
expected value 〈µ2

Mn theor〉1/2 = 4.01 µB. The difference
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among these two values is very likely due to the approx-
imation for the Ho contribution to χ(T ) as explained in
Section 3.2.

On the other hand there are two extreme cases for spin
disorder. Firstly one may imagine the majority ions Mn4+

(90%) to be perfectly ordered in a planar antiferromag-
netic (Cx, 0,Az) structure with the spin defects (0,Fy, 0)
at the random positions of the Mn3+ ions. Such a model
is extremely unlikely because it does not provide any ar-
gument for a ferromagnetic order of the defect spins with
a unique axis, since (0,±Fy, 0) configurations are ener-
getically equivalent in the (Cx, 0,Az) environment. Much
more likely is a second model, a spin configuration in
which the extra eg electrons at Mn3+ provide for a di-
rectional polarisation of their Mn4+ neighbours in such a
way that that the canted structure (Cx(r),Fy(r),Az(r))
changes smoothly close to a defect. The components Cx,
Fy, Az (Tab. 1, Fig. 4) observed from Bragg data are then
the space averages 〈Cx(r)〉 etc., and the deviation from the
spin only values will give rise to diffuse magnetic scatter-
ing which, in the presence of the paramagnetic scattering
due to Ho3+, would be hard to separate from powder data
in the present case. This second model is the magnetic po-
laron picture introduced by Mott [40], and suggested for
the manganites by Coey et al. [41]. Local charge neutral-
ity demands that Mn3+ defects be close to the immobile
Ho3+ ions, and this makes it likely that the polarons are
localised but do overlap: a characteristic distance of 8 Å
is estimated from the Ho3+ concentration. This has to be
compared with the size of an MnO6 octahedron of 3.9 Å
(or 6.54 Å if one includes the oxygen electronic charge dis-
tribution). The overlap provides for a well defined direc-
tion of the ferromagnetic Fy component and for canting
angles Θij between neighbouring spins favoring electron
hopping [5,41].

This extended defect picture is supported also by the
observed Mn-O distances. In Ho0.1Ca0.9MnO3 only 10% of
the manganese ions are in the t3

2geg configuration respon-
sible for the Jahn-Teller distortion. The smooth transition
from nearly undistorted octahedra at room temperature to
the strong distortion at lower temperatures (Fig. 13) sug-
gests a delocalisation of eg electrons, since otherwise the
majority (90%) of undistorted octahedra would dominate
the scattering at low temperatures also, in contradiction
with what we observe. A further hint towards this elec-
tronic effect comes from undoped MnCaO3 with pure t3

2g

configurations: we find at 10 K nearly undistorted octahe-
dra with MnO-bond lengths of 1.882(0.003), 1.885(0.008)
and 1.906(0.008) Å.

So, in summary, it is apparently the smaller ionic ra-
dius of Ho3+ as compared with La3+ which enhances elec-
tron hopping and the ferromagnetic coupling at low dop-
ing rates, but, destabilising the lattice at higher doping
rates, gives rise to charge order in the monoclinic phase.

We acknowledge the support of this investigation by the BMBF
and the DFG.
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